im电竞官网平台-产品中心
产品中心
浏览次数: 42 发布日期: 2024-04-11 03:35:16 来源:im电竞官网 作者:lm体育APP官方版下载
返回列表背后操作者并不是什么PS大佬,而是一只AI,名字很直白:拼图扩散(Collage Diffusion)。
随便找几张小图拿给它,AI就能自己看懂图片内容,再把各元素非常自然地拼成一张大图——完全不存在一眼假。
至于为啥还有多种版本?问就是因为用户还能自定义,在总体不变得太离谱的前提下,他们可以微调各种细节。
话说这两年,“文字生成图像的扩散模型”着实大火了一把,DALL·E 2和Imagen都是基于此开发出来的应用。这种扩散模型的优点,是生成图片多样化、质量较高。
不过,文字终究对于目标图像,最多只能起到模糊的规范作用,所以用户通常要花大量时间调整提示(prompt),还得搭配上额外的控制组件,才可以取得不错的效果。
如果用户只输入“一个装有米饭、毛豆、生姜和寿司的便当盒”,那就既没描述哪种食物放到哪一格,也没有说明每种食物的外观。但如果非要讲清楚的话,用户恐怕得写一篇小作文了……
首先是分层:使用基于图层的图像编辑UI,将源图像分解成一个个RGBA图层(R、G、B分别代表红、绿、蓝,A代表透明度),然后将这些图层排列在画布上,并把每个图层和文字提示配对。
到目前为止,分层已经是计算机图形领域中一项成熟的技术,不过此前分层信息一般是作为单张图片输出结果使用的。
总而言之,该算法不仅限制了对象的某些属性(如视觉特征)的变化,同时允许属性(方向、光照、透视、遮挡)发生改变。
他们不仅可以自定义场景中的空间排列顺序(就是把从别处扣出来的图放到适当的位置);还能调整生成图像的各个组件。用同样的源图,可以得出不同的效果。
而在非交互式模式下(即用户不拼图,直接把一堆小图丢给AI),AI也能根据拿到的小图,自动拼出一张效果自然的大图。
在校求学期间,他曾到英伟达实习4个月,与英伟达深度学习研究小组合作,参与训练了增加100M+参数的视觉转换器模型。